Characterization of telomeric defects and signal transduction pathways in Dyskeratosis Congenita cells

نویسندگان

  • Erik R. Westin
  • Erik Westin
چکیده

Telomere attrition is a natural process that occurs due to inadequate telomere maintenance. Once at a critically short threshold, telomeres signal the cell to cease division and enter a cell fate termed senescence. Telomeres can be elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Mutations in the telomerase complex or telomere-related genes give rise to the premature aging disorder Dyskeratosis Congenita (DC). DC provides a unique model system to study human aging in relation to telomerase insufficiency and the subsequent accelerated telomere attrition. In this thesis, skin fibroblasts as well as keratinocytes and T-cells were analyzed from patients with Autosomal Dominant Dyskeratosis Congenita (AD DC) caused by a single allele mutation in the telomerase RNA component (TERC) that leads to telomerase haploinsufficiency. These cells were determined to have a severe proliferative defect and extremely short telomeres. It is demonstrated that the short telomeres in AD DC cells initiate a DNA damage response transduced by the p53/p21 WAF/CIP pathway which mediate an elevation in steady-state levels of mitochondrially-derived superoxide and oxidative stress. Exogenous expression of the catalytic reverse transcriptase component of telomerase (TERT) activated telomerase in DC fibroblasts but resulted in reduced activity (~50% compared to control fibroblasts); however telomeres were successfully maintained, albeit at a short length. Simultaneous expression of both TERT and TERC led to robust telomerase activity and elongation of telomeres, indicating that TERC haploinsufficiency is a rate-limiting step in telomere maintenance in DC cells. Reconstitution of telomerase activity in AD DC cells ameliorated the proliferative defects, reduced the p53/p21 WAF/CIP response and decreased oxidative stress. Increased superoxide and slow proliferation found in DC cells could also be mitigated by inhibiting p21 WAF/CIP or by decreasing the oxygen tension to which the cells are exposed. Together, these results support the hypothesis that the insufficient

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus.

Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1(CP)) in two siblings with CP. POT1(CP)induced a proliferative arrest that could be bypassed by telomer...

متن کامل

Expression of the Genetic Suppressor Element 24.2 (GSE24.2) Decreases DNA Damage and Oxidative Stress in X-Linked Dyskeratosis Congenita Cells

The predominant X-linked form of Dyskeratosis congenita results from mutations in DKC1, which encodes dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. Here we hav...

متن کامل

GSE4, a Small Dyskerin- and GSE24.2-Related Peptide, Induces Telomerase Activity, Cell Proliferation and Reduces DNA Damage, Oxidative Stress and Cell Senescence in Dyskerin Mutant Cells

Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24....

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation.

The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015